With the rapid development of the information society, human body gesture recognition has become an important technology for human-computer interaction. This paper combines Kinect’s human bone monitoring technology with auxiliary… Click to show full abstract
With the rapid development of the information society, human body gesture recognition has become an important technology for human-computer interaction. This paper combines Kinect’s human bone monitoring technology with auxiliary gymnastics training. The gymnastics and dance training can correct students’ wrong movements in time through feedback and improve the training efficiency, so as to meet the needs of nature and harmony of human-machine interaction. In this paper, based on the wireless network Kinect, the human body posture recognition method and tracking technology are studied, and the joint point angle representation method based on the fixed axis is proposed, and the posture recognition method based on the joint point angle is improved, which can accurately recognize the human body posture. Aiming at the situation that the human joint points are occluded, the human joint point repair algorithm is improved. The algorithm is based on the proportion of human bone nodes and the characteristics of human motion, and based on geometric principles, it repairs the occluded points. The feasibility of the original joint point data, angle feature, and distance feature in expressing human behavior is analyzed through experiments, a standard gymnastics movement database is established, and new gymnastics movements can be entered at any time. A gymnastics auxiliary training system is designed, which can analyze and evaluate the exercises of the trainer from the joint point coordinates and the angle formed by the joints and provide the trainer with intuitive error correction prompts. The human body posture recognition method studied in this paper can accurately give the difference between the trainer’s movement and the standard movement, and the trainer can adjust the movement posture according to the prompts, improve the level of gymnastics, and achieve the purpose of auxiliary training. Experiments show that the algorithm model has an accuracy rate of 95.7% for human body posture recognition, and it plays a huge role in line dance aerobics and gymnastics training.
               
Click one of the above tabs to view related content.