LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Application of Time-Frequency Methods on Strong Motion Signals

Photo from wikipedia

Real-world physical signals are commonly nonstationary, and their frequency details change with time and do not remain constant. Fourier transform that uses infinite sine/cosine waves as basis functions represents frequency… Click to show full abstract

Real-world physical signals are commonly nonstationary, and their frequency details change with time and do not remain constant. Fourier transform that uses infinite sine/cosine waves as basis functions represents frequency constituents of signals but does not show the variations of the signal frequency contents over time. Multiresolution demonstration of the time-frequency domain may be achieved by the techniques that can support adjustable resolution in time and frequency. Earthquake strong motion signals are nonstationary and indicate time-varying frequency content due to the scattering from the source to the site. In this paper, we applied short-time Fourier transform, S-transform, continuous wavelet transform, fast discrete wavelet transform, synchrosqueezing transform, synchroextracting transform, continuous wavelet synchrosqueezing, filter bank synchrosqueezing, empirical mode decomposition, and Fourier decomposition methods on the near-source strong motion signals from the 7 May 2020 Mosha-Iran earthquake to study and compare the frequency content of this event estimated by these methods. According to the results that are examined by Renyi entropy and relative error, synchroextracting performed better in terms of energy concentration, and the Fourier decomposition method revealed the lowest difference between the original and reconstructed records.

Keywords: frequency; motion signals; time; time frequency; strong motion; transform

Journal Title: Advances in Civil Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.