LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accelerating Spark-Based Applications with MPI and OpenACC

Photo from wikipedia

The amount of data produced in scientific and commercial fields is growing dramatically. Correspondingly, big data technologies, such as Hadoop and Spark, have emerged to tackle the challenges of collecting,… Click to show full abstract

The amount of data produced in scientific and commercial fields is growing dramatically. Correspondingly, big data technologies, such as Hadoop and Spark, have emerged to tackle the challenges of collecting, processing, and storing such large-scale data. Unfortunately, big data applications usually have performance issues and do not fully exploit a hardware infrastructure. One reason is that applications are developed using high-level programming languages that do not provide low-level system control in terms of performance of highly parallel programming models like message passing interface (MPI). Moreover, big data is considered a barrier of parallel programming models or accelerators (e.g., CUDA and OpenCL). Therefore, the aim of this study is to investigate how the performance of big data applications can be enhanced without sacrificing the power consumption of a hardware infrastructure. A Hybrid Spark MPI OpenACC (HSMO) system is proposed for integrating Spark as a big data programming model, with MPI and OpenACC as parallel programming models. Such integration brings together the advantages of each programming model and provides greater effectiveness. To enhance performance without sacrificing power consumption, the integration approach needs to exploit the hardware infrastructure in an intelligent manner. For achieving this performance enhancement, a mapping technique is proposed that is built based on the application’s virtual topology as well as the physical topology of the undelaying resources. To the best of our knowledge, there is no existing method in big data applications related to utilizing graphics processing units (GPUs), which are now an essential part of high-performance computing (HPC) as a powerful resource for fast computation.

Keywords: big data; spark; topology; data applications; performance; mpi openacc

Journal Title: Complexity
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.