LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Two-Level Model for Traffic Signal Timing and Trajectories Planning of Multiple CAVs in a Random Environment

Photo from wikipedia

Connected and automated vehicles (CAVs) trajectories not only provide more real-time information by vehicles to infrastructure but also can be controlled and optimized, to further save travel time and gasoline… Click to show full abstract

Connected and automated vehicles (CAVs) trajectories not only provide more real-time information by vehicles to infrastructure but also can be controlled and optimized, to further save travel time and gasoline consumption. This paper proposes a two-level model for traffic signal timing and trajectories planning of multiple connected automated vehicles considering the random arrival of vehicles. The proposed method contains two levels, i.e., CAVs’ arrival time and traffic signals optimization, and multiple CAVs trajectories planning. The former optimizes CAVs’ arrival time and traffic signals in a random environment, to minimize the average vehicle’s delay. The latter designs multiple CAVs trajectories considering average gasoline consumption. The dynamic programming (DP) and the General Pseudospectral Optimal Control Software (GPOPS) are applied to solve the two-level optimization problem. Numerical simulation is conducted to compare the proposed method with a fixed-time traffic signal. Results show that the proposed method reduces both average vehicle’s delay and gasoline consumption under different traffic demand significantly. The average reduction of vehicle’s delay and gasoline consumption are 26.91% and 10.38%, respectively, for a two-phase signalized intersection. In addition, sensitivity analysis indicates that the minimum green time and free-flow speed have a noticeable effect on the average vehicle’s delay and gasoline consumption.

Keywords: traffic; traffic signal; two level; time; trajectories planning; gasoline consumption

Journal Title: Journal of Advanced Transportation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.