LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inferences for Weibull Fréchet Distribution Using a Bayesian and Non-Bayesian Methods on Gastric Cancer Survival Times

Photo by nrkbeta from unsplash

In this article, based on progressively type-II censored schemes, the maximum likelihood, Bayes, and two parametric bootstrap methods are used for estimating the unknown parameters of the Weibull Fréchet distribution… Click to show full abstract

In this article, based on progressively type-II censored schemes, the maximum likelihood, Bayes, and two parametric bootstrap methods are used for estimating the unknown parameters of the Weibull Fréchet distribution and some lifetime indices as reliability and hazard rate functions. Moreover, approximate confidence intervals and asymptotic variance-covariance matrix have been obtained. Markov chain Monte Carlo technique based on Gibbs sampler within Metropolis–Hasting algorithm is used to generate samples from the posterior density functions. Furthermore, Bayesian estimate is computed under both balanced square error loss and balanced linear exponential loss functions. Simulation results have been implemented to obtain the accuracy of the estimators. Finally, application on the survival times in years of a group of patients given chemotherapy and radiation treatment is presented for illustrating all the inferential procedures developed here.

Keywords: weibull chet; distribution using; survival times; inferences weibull; chet distribution

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.