LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Reponses in a Sustainable Dry Turning Operation: A Comparative Analysis

Photo from wikipedia

In a turning operation, involving removal of material from the outer diameter of a rotating cylindrical workpiece using a single-point cutting tool, there exist complex relationships between various cutting parameters… Click to show full abstract

In a turning operation, involving removal of material from the outer diameter of a rotating cylindrical workpiece using a single-point cutting tool, there exist complex relationships between various cutting parameters and responses. In this paper, a turning operation under dry environment is considered with cutting speed, feed rate, and depth of cut as the input parameters, as well as material removal rate, average surface roughness, and cutting force as the responses. Dry turning operation reduces energy consumption and machining cost, thus eventually resulting in sustainable machining. For the considered process, the corresponding response values are envisaged using four prediction models, that is, multivariate regression analysis, fuzzy logic, artificial neural network, and adaptive neurofuzzy inference system (ANFIS), and their prediction performance is contrasted using five statistical metrics, that is, root mean squared percent error, mean absolute percentage error, root mean squared log error, correlation coefficient, and root relative squared error. It is noticed that ANFIS model consisting of the advantages features of both fuzzy logic and neural network outperforms the other prediction models with respect to the computed values of the considered statistical measures. Based on their acceptable values, it can be propounded that the ANFIS model can be effectively employed for prediction of process responses while treating different machining parameters as the input variables.

Keywords: turning operation; error; analysis; dry turning; prediction

Journal Title: Mathematical Problems in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.