LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Critical Links in Urban Road Network considering Cascading Failures

Photo from wikipedia

The identification of critical road links is greatly important to the management and control of the transportation system. Existing works fail to fully consider the influence of the distribution of… Click to show full abstract

The identification of critical road links is greatly important to the management and control of the transportation system. Existing works fail to fully consider the influence of the distribution of traffic flow and its dynamic characteristics on critical road link identification. In this paper, we propose a criticality calculation method for urban road networks considering the effect of cascading failures which models the distribution change of traffic flow after a specific road link failed. Firstly, a sequence diagram calculation method is proposed to model how the traffic failure on one road link propagates to related links. Secondly, the diagram of the cascade failure sequence is divided into different stages according to the consistency of the objective function. The influence value of each stage is computed for the target road link. Finally, the failure probability model and the importance indicator are proposed to calculate the criticality for each road link. We evaluate our critical road link identification method on both simulated and read scenes. In our simulation, we achieve 90.6% and 91.7% for the accuracy on two key metrics, respectively, i.e., the length of failure road link and the total parking delay, which proves the feasibility of our method. Our method also achieves reasonable conclusions on real data and helps to find the critical road links.

Keywords: road link; critical road; road; method; identification critical

Journal Title: Mathematical Problems in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.