Objective The classical osteoporotic signaling pathways include the four key genes (LRP5, Runx2, Osterix, and RANKL) influencing the regulation of osteogenesis and osteoclastogenesis. This study investigates the expression of these… Click to show full abstract
Objective The classical osteoporotic signaling pathways include the four key genes (LRP5, Runx2, Osterix, and RANKL) influencing the regulation of osteogenesis and osteoclastogenesis. This study investigates the expression of these four genes associated with bone remodeling during fracture healing. Methods Ovariectomized rats as an osteoporotic group were randomly divided into three groups-group A, group B, and group C. Nonosteoporotic rats as the control group were likewise divided into three groups A0, B0, and C0, using the same method. The rats were killed on the third day of fractures in groups A and A0, on the seventh day of fractures in groups B and B0, and on the fourteenth day of fractures in groups C and C0. The bone specimens were taken from the femoral fracture site, and the expression level of each gene in the bone specimens was detected using RT-qPCR, Western blotting, and immunohistochemistry. Results LRP5, Runx2, and Osterix expressions were decreased in osteoporotic rat fractures and then increased over time. The expression of RANKL was elevated in osteoporotic rat bone specimens, which decreased after that. Conclusion The expressions of the four genes varied with time after fracture, which could be associated with the various stages of bone repair. The four genes can inform practice in ideal interventions in the prevention and management of osteoporosis.
               
Click one of the above tabs to view related content.