LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Approaches to Federated Computing for the Protection of Patient Privacy and Security Using Medical Applications

Photo by drew_hays from unsplash

Computing model may train on a distributed dataset using Medical Applications, which is a distributed computing technique. Instead of a centralised server, the model trains on device data. The server… Click to show full abstract

Computing model may train on a distributed dataset using Medical Applications, which is a distributed computing technique. Instead of a centralised server, the model trains on device data. The server then utilizes this model to train a joint model. The aim of this study is that Medical Applications claims no data is transferred, thereby protecting privacy. Botnet assaults are identified through deep autoencoding and decentralised traffic analytics. Rather than enabling data to be transmitted or relocated off the network edge, the problem of the study is in privacy and security in Medical Applications strategies. Computation will be moved to the edge layer to achieve previously centralised outcomes while boosting data security. Study Results in our suggested model detects anomalies with up to 98 percent accuracy utilizing MAC IP and source/destination/IP for training. Our method beats a traditional centrally controlled system in terms of attack detection accuracy.

Keywords: privacy security; medical applications; using medical; privacy; model

Journal Title: Applied Bionics and Biomechanics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.