LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Super Resolution Image Visual Quality Assessment Based on Feature Optimization

Photo by usgs from unsplash

Most existing no-referenced image quality assessment (NR-IQA) algorithms need to extract features first and then predict image quality. However, only a small number of features work in the model, and… Click to show full abstract

Most existing no-referenced image quality assessment (NR-IQA) algorithms need to extract features first and then predict image quality. However, only a small number of features work in the model, and the rest will degrade the model performance. Consequently, an NR-IQA framework based on feature optimization is proposed to solve this problem and apply to the SR-IQA field. In this study, we designed a feature engineering method to solve this problem. Specifically, the features associate with the SR images were first collected and aggregated. Furthermore, several advanced feature selection algorithms were used to sort the feature sets according to their importance, and the importance matrix of features is obtained. Then, we examined the linear relationship between the number of features and Pearson linear correlation coefficient (PLCC) to determine the optimal number of features and the optimal feature selection algorithm, so as to obtain the optimal model. The results showed that the image quality scores predicted by the optimal model are in good agreement with the human subjective scores. Adopting the proposed feature optimization framework, we can effectively reduce the number of features in the model and obtain better performance. The experimental results indicated that SR image quality can be accurately predicted using only a small part of image features. In summary, we proposed a feature optimization framework to solve the current problem of irrelevant features in SR-IQA, and an SR image quality assessment model was proposed consequently.

Keywords: image quality; feature optimization; feature; image

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.