LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Klotho Ameliorates Podocyte Injury through Targeting TRPC6 Channel in Diabetic Nephropathy

Photo by markusspiske from unsplash

Podocyte damage is vital for the etiopathogenesis of diabetic nephropathy (DN). Klotho (KL), a multifunctional protein, has been demonstrated to have renoprotective effects; nevertheless, the mechanism for protective effect has… Click to show full abstract

Podocyte damage is vital for the etiopathogenesis of diabetic nephropathy (DN). Klotho (KL), a multifunctional protein, has been demonstrated to have renoprotective effects; nevertheless, the mechanism for protective effect has not been completely elucidated. Transient receptor potential cation channel subfamily C, member 6 (TRPC6), a potential target of KL, is implicated in glomerular pathophysiology. Here, we sought to determine whether KL could protect against podocyte injury through inhibiting TRPC6 in DN. We found that high glucose (HG) triggered podocyte injury as manifested by actin cytoskeleton damage along with the downregulation of KL and Synaptopodin and the upregulation of TRPC6. KL overexpression reversed HG-induced podocytes injury, whereas cotreatment with TRPC6 activator flufenamic acid (FFA) significantly abrogated the beneficial effects conferred by KL. Moreover, KL knockdown in podocytes resulted in actin cytoskeleton impairment, decreased Synaptopodin expression, and increased TRPC6 expression. In db/db mice, KL overexpression inhibited TRPC6 expression and attenuated diabetes-induced podocyte injury, which was accompanied by decreased albuminuria and ameliorated glomerulosclerosis. Our data provided novel mechanistic insights for KL against DN and highlighted TRPC6 as a new target for KL in podocytes to prevent DN.

Keywords: klotho ameliorates; podocyte injury; nephropathy klotho; ameliorates podocyte; injury; diabetic nephropathy

Journal Title: Journal of Diabetes Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.