LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on a Machine Learning-Based Method for Assessing the Safety State of Historic Buildings

Photo from wikipedia

Historic and protected buildings are increasingly valued due to their valuable historical and cultural value. The assessment of the safety state of historic buildings has received more attention. Emerging machine… Click to show full abstract

Historic and protected buildings are increasingly valued due to their valuable historical and cultural value. The assessment of the safety state of historic buildings has received more attention. Emerging machine learning algorithms, with their excellent computational performance, provide new ideas and new means to solve practical problems in various fields. Therefore, this paper proposes a method for assessing the safety state of historic buildings based on machine learning techniques. Firstly, based on the analysis of the characteristics of historical buildings and common security problems, the application of wireless sensor networks to the security monitoring of historical buildings is proposed in order to improve the automation of monitoring. Then, in order to improve the accuracy of the assessment, a combination of kernel canonical correlation analysis (KCCA) and support vector machine (SVM) is used to establish the security monitoring model. The experimental results show that by choosing a suitable KCCA function, the redundant features of the data can be reduced while the comprehensiveness of the building structure identification features can be retained, thus effectively improving the prediction accuracy of the SVM. The KCCA-SVM model can accurately predict the physical quantities such as relative structural displacement of historical buildings with good reliability.

Keywords: machine; state historic; safety state; machine learning; historic buildings

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.