LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification

Photo from wikipedia

Early detection of brain tumors can save precious human life. This work presents a fully automated design to classify brain tumors. The proposed scheme employs optimal deep learning features for… Click to show full abstract

Early detection of brain tumors can save precious human life. This work presents a fully automated design to classify brain tumors. The proposed scheme employs optimal deep learning features for the classification of FLAIR, T1, T2, and T1CE tumors. Initially, we normalized the dataset to pass them to the ResNet101 pretrained model to perform transfer learning for our dataset. This approach results in fine-tuning the ResNet101 model for brain tumor classification. The problem with this approach is the generation of redundant features. These redundant features degrade accuracy and cause computational overhead. To tackle this problem, we find optimal features by utilizing differential evaluation and particle swarm optimization algorithms. The obtained optimal feature vectors are then serially fused to get a single-fused feature vector. PCA is applied to this fused vector to get the final optimized feature vector. This optimized feature vector is fed as input to various classifiers to classify tumors. Performance is analyzed at various stages. Performance results show that the proposed technique achieved a speedup of 25.5x in prediction time on the medium neural network with an accuracy of 94.4%. These results show significant improvement over the state-of-the-art techniques in terms of computational overhead by maintaining approximately the same accuracy.

Keywords: brain tumor; optimal deep; brain; feature; tumor classification; deep learning

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.