LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feature Recognition and Style Transfer of Painting Image Using Lightweight Deep Learning

Photo by kellysikkema from unsplash

This work aims to improve the feature recognition efficiency of painting images, optimize the style transfer effect of painting images, and save the cost of computer work. First, the theoretical… Click to show full abstract

This work aims to improve the feature recognition efficiency of painting images, optimize the style transfer effect of painting images, and save the cost of computer work. First, the theoretical knowledge of painting image recognition and painting style transfer is discussed. Then, lightweight deep learning techniques and their application principles are introduced. Finally, faster convolutional neural network (Faster-CNN) image feature recognition and style transfer models are designed based on a lightweight deep learning model. The model performance is comprehensively evaluated. The research results show that the designed Faster-CNN model has the highest average recognition efficiency of about 28 ms and the lowest of 17.5 ms in terms of feature recognition of painting images. The accuracy of the Faster-CNN model for image feature recognition is about 97% at the highest and 95% at the lowest. Finally, the designed Faster-CNN model can perform style recognition transfer on a variety of painting images. In terms of style recognition transfer efficiency, the highest recognition transfer rate of the designed Faster-CNN model is about 79%, and the lowest is about 77%. This work not only provides an important technical reference for feature recognition and style transfer of painting images but also contributes to the development of lightweight deep learning techniques.

Keywords: recognition; feature recognition; transfer; lightweight deep; style transfer

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.