LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization-Based Ensemble Feature Selection Algorithm and Deep Learning Classifier for Parkinson's Disease

Photo from wikipedia

PD (Parkinson's Disease) is a severe malady that is painful and incurable, affecting older human beings. Identifying PD early in a precise manner is critical for the lengthened survival of… Click to show full abstract

PD (Parkinson's Disease) is a severe malady that is painful and incurable, affecting older human beings. Identifying PD early in a precise manner is critical for the lengthened survival of patients, where DMTs (data mining techniques) and MLTs (machine learning techniques) can be advantageous. Studies have examined DMTs for their accuracy using Parkinson's dataset and analyzing feature relevance. Recent studies have used FMBOAs for feature selections and relevance analyses, where the selection of features aims to find the optimal subset of features for classification tasks and combine the learning of FMBOAs. EFSs (ensemble feature selections) are viable solutions for combining the benefits of multiple algorithms while balancing their drawbacks. This work uses OBEFSs (optimization-based ensemble feature selections) to select appropriate features based on agreements. Ensembles have the ability to combine results from multiple feature selection approaches, including FMBOAs, LFCSAs (Lévy flight cuckoo search algorithms), and AFAs (adaptive firefly algorithms). These approaches select optimized feature subsets, resulting in three feature subsets, which are subsequently matched for correlations by ensembles. The optimum features are generated by OBEFSs the trained on FCBi-LSTMs (fuzzy convolution bi-directional long short-term memories) for classifications. This work's suggested model uses the UCI (University of California-Irvine) learning repository, and the methods are evaluated using LOPO-CVs (Leave-One-Person-Out-Cross Validations) in terms of accuracies, F-measure values, and MCCs (Matthews correlation coefficients).

Keywords: ensemble feature; optimization based; parkinson disease; feature; based ensemble; selection

Journal Title: Journal of Healthcare Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.