In recent years, researchers have solved the multi-objective optimization problem by making various improvements to the multi-objective particle swarm optimization algorithm. However, we propose a hybrid multi-objective particle swarm optimization… Click to show full abstract
In recent years, researchers have solved the multi-objective optimization problem by making various improvements to the multi-objective particle swarm optimization algorithm. However, we propose a hybrid multi-objective particle swarm optimization (CCHMOPSO) with a central control strategy. In this algorithm, a disturbance strategy based on boundary fluctuations is first used for the updated new particles and nondominant particles. To prevent the population from falling into a local extremum, some particles are disturbed. Then, when the external archive capacity reaches the extreme value, we use a central control strategy to update the external archive, so that the archive solution gets a good distribution. When the dominance of the current particle and the individual best particle cannot be determined, to enhance the diversity of the population, the combination method of the current particle and the individual best particle can be used to update the individual best particle. The experimental results show that CCHMOPSO is better than four multi-objective particle swarm optimization algorithms and four multi-objective evolutionary algorithms. It is a feasible method for solving multi-objective optimization problems.
               
Click one of the above tabs to view related content.