LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Seismic Facies Analysis Using the Multiattribute SOM-K-Means Clustering

Photo by adimfotografia1 from unsplash

An accurate seismic facies analysis (SFA) can provide insight into the subsurface sedimentary facies and has guiding significance for geological exploration. Many machine learning algorithms, including unsupervised, supervised, and deep… Click to show full abstract

An accurate seismic facies analysis (SFA) can provide insight into the subsurface sedimentary facies and has guiding significance for geological exploration. Many machine learning algorithms, including unsupervised, supervised, and deep learning algorithms, have been developed successfully for SFA over the past decades. However, SFA and facies classification are still challenging tasks due to the complex characteristics of geological and seismic data. A multiattribute SOM-K-means clustering algorithm, which implements a two-stage clustering by using multiple geological attributes, is proposed and applied for SFA. The proposed algorithm can effectively extract complementary features from the multiple attribute volumes and comprehensively use the different attributes to improve the recognition ability of seismic facies. Experimental results show that the proposed algorithm improves clustering accuracy and can be used as an effective and powerful tool for SFA.

Keywords: som means; multiattribute som; seismic facies; means clustering; facies analysis

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.