LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis

Photo from wikipedia

In recent years, within the scope of financial quantification, quantitative investment models that support human-oriented algorithms have been proposed. These models attempt to characterize fiat-delayed series through intelligent acquaintance methods… Click to show full abstract

In recent years, within the scope of financial quantification, quantitative investment models that support human-oriented algorithms have been proposed. These models attempt to characterize fiat-delayed series through intelligent acquaintance methods to predict data and arrange investment strategies. The standard long short-term memory (LSTM) neural network has the shortcoming of low effectiveness of the fiscal cycle sequence. This work utters throughout the amended LSTM design. The augury result of the neural reticulation was upgraded by coalesce attentional propose to the LSTM class, and a genetic algorithmic program product was formulated. Genetic algorithm (GA) updates the inalienable parameters to a higher generalization aptitude. Using man stock insignitor future data from January 2019 to May 2020, we accomplish a station-of-the-contrivance algorithmic rule. Inferences have shown that the improved LSTM example proposed in this paper outperforms other designs in multiple respect, and it performs effectively in investment portfolio design, which is suitable for future investment.

Keywords: deep model; lstm based; based deep; investment; investment portfolio

Journal Title: Applied Bionics and Biomechanics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.