LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational Intelligence Powered Experimental Test on Energy Consumption Characteristics of Cold-Water Phase-Change Energy Heat Pump System

Photo from wikipedia

In order to study the influence on the effective energy efficiency ratio, the energy consumption characteristics of a cold-water phase change heat pump system are discussed in this article. An… Click to show full abstract

In order to study the influence on the effective energy efficiency ratio, the energy consumption characteristics of a cold-water phase change heat pump system are discussed in this article. An experimental system of the cold-water phase-change energy heat pump system is designed and constructed, and then the deicing energy consumption and unit energy consumption of the heat pump system are analyzed by computational intelligence-powered methods. At last, the primary energy utilization ratio of the heat pump system is calculated. The results show that under the setting conditions, the deicing capacity of the heat pump system is about 0.135, the primary energy utilization ratio is about 1.145, and the COP (coefficient of performance) of the heat pump unit is between 2.8 and 3.2. Considering the system's deicing energy consumption, the effective COP of the unit is between 2.42 and 2.76, so from this point, this kind of heat pump system can be widely used in the future. In order to improve the effective COP of the unit, the processes of ice making and melting should be further optimized to reduce heat loss and power loss.

Keywords: pump system; heat; energy; heat pump

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.