LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Concentrated Growth Factors Combined with Lipopolysaccharide Stimulate the In Vitro Regenerative and Osteogenic Activities of Human Dental Pulp Stem Cells by Balancing Inflammation

Photo from wikipedia

Aim We investigated the long-term effects of exposure to concentrated growth factors (CGFs) on the regenerative properties of dental pulp stem cells (DPSCs) in the presence and absence of lipopolysaccharide… Click to show full abstract

Aim We investigated the long-term effects of exposure to concentrated growth factors (CGFs) on the regenerative properties of dental pulp stem cells (DPSCs) in the presence and absence of lipopolysaccharide (LPS) as a proinflammatory agent. Methods DPSCs were cultured with CGF at different concentrations of LPS (0.1, 1, and 10 µg/ml) for 21 days. Then, using MTT and scratch assays, the cell viability and migration were examined. Osteogenic stimulation was evaluated by alkaline phosphatase (ALP) staining and Sirius Red staining, which determined the ALP activity and collagen levels, respectively. The expression levels of osteogenic markers were quantified using the qRT-PCR method. One-way analysis of variance (ANOVA) and Tukey's HSD test were used to analyze differences between groups. Results Long-term treatment of DPSCs with CGFs reduced LPS-induced cell death. Moreover, CGF and LPS (1 µg/ml), either in combination or alone, improved the DPSC migratory ability and caused a significant increase in osteogenic stimulation through the upregulation of collagen levels and ALP activity. Additionally, CGFs significantly upregulated RUNX2, DSPP, OCN, and OPN mRNA levels (as osteogenic markers), while LPS (1 µg/ml) only significantly increased OCN overexpression. Conclusion Our findings are evidence that CGF could be a promising agent to induce dentin-pulp complex healing in long-term chronic inflammation.

Keywords: growth factors; dental pulp; concentrated growth; pulp stem; pulp; stem cells

Journal Title: International Journal of Dentistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.