The precise identification of arrhythmia is critical in electrocardiogram (ECG) research. Many automatic classification methods have been suggested so far. However, efficient and accurate classification is still a challenge due… Click to show full abstract
The precise identification of arrhythmia is critical in electrocardiogram (ECG) research. Many automatic classification methods have been suggested so far. However, efficient and accurate classification is still a challenge due to the limited feature extraction and model generalization ability. We integrate attention mechanism and residual skip connection into the U-Net (RA-UNET); besides, a skip connection between the RA-UNET and a residual block is executed as a residual attention convolutional neural network (RA-CNN) for accurate classification. The model was evaluated using the MIT-BIH arrhythmia database and achieved an accuracy of 98.5% and F1 scores for the classes S and V of 82.8% and 91.7%, respectively, which is far superior to other approaches.
               
Click one of the above tabs to view related content.