LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Downregulation of CIRP Prone Cells to Oxidative Injury via Regulating Nrf2 Signaling Pathway

Photo from wikipedia

Cold-inducible RNA-binding protein (CIRP) is a cellular stress-response protein, whose expression can be induced by a variety of stress conditions. Our previous study showed that intracellular CIRP is a protective… Click to show full abstract

Cold-inducible RNA-binding protein (CIRP) is a cellular stress-response protein, whose expression can be induced by a variety of stress conditions. Our previous study showed that intracellular CIRP is a protective factor against cellular oxidative stress and silencing of CIRP gene prone cells to apoptosis. However, the underlying mechanism remains unknown. The present study was aimed at investigating the possible mechanisms underlying the protective role of CIRP in oxidative stress injury. Herein, we used HEK293T cells as our cell model to investigate the relation between CIRP and the possible antioxidant pathways by using the latest genetic silencing technologies. Our results showed that silencing CIRP by using SaiRNA-based genetic silencing tool leads to the downregulation of Nrf2 and Nrf2-regulated antioxidant genes in HEK293T cells. Taken together, our study identified the antioxidant Nrf2 signaling pathway as a downstream target of CIRP, and silencing CIRP may prone cells to apoptosis by downregulating the Nrf2 antioxidant pathway in response to oxidative injury.

Keywords: prone cells; signaling pathway; nrf2 signaling; oxidative injury; cirp

Journal Title: BioMed Research International
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.