LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Weighted Deep Learning Model to Detect Fault in IoT-Based Industrial Equipment

Photo from wikipedia

Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model… Click to show full abstract

Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial scenarios because of the complex and dynamic relationship between devices. The scope of this research is that it can detect equipment defects and deploys them in a natural production environment. The proposed research is describing an online detection method for system failures based on long short-term memory neural networks. In recent years, deep learning technology has taken over as the primary method for detecting faults. A neural network with a long short-term memory is used to develop an online defect detection model. Feature extraction from sensor data is done using the curve alignment method. Based on long-term memory neural networks, the fault detection model is built (LSTM). In the end, sliding window technology is used to identify and fix the problem: the model's online detection and update. The method's efficacy is demonstrated by experiments based on real data from power plant sensors.

Keywords: industrial equipment; detection; equipment; deep learning; model; iot

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.