LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of the Diagnosis Model of Peripheral Non-Small-Cell Lung Cancer under Computed Tomography Images

Photo from wikipedia

This study aimed to explore the effect of deep learning models on lung CT image lung parenchymal segmentation (LPS) and the application value of CT image texture features in the… Click to show full abstract

This study aimed to explore the effect of deep learning models on lung CT image lung parenchymal segmentation (LPS) and the application value of CT image texture features in the diagnosis of peripheral non-small-cell lung cancer (NSCLC). Data of peripheral lung cancer (PLC) patients was collected retrospectively and was divided into peripheral SCLC group and peripheral NSCLC group according to the pathological examination results, ResNet50 model and feature pyramid network (FPN) algorithm were undertaken to improve the Mask-RCNN model, and after the MaZda software extracted the texture features of the CT images of PLC patients, the Fisher coefficient was used to reduce the dimensionality, and the texture features of the CT images were analyzed and compared. The results showed that the average Dice coefficients of the 2D CH algorithm, Faster-RCNN, Mask-RCNN, and the algorithm proposed in the validation set were 0.882, 0.953, 0.961, and 0.986, respectively. The accuracy rates were 88.3%, 93.5%, 94.4%, and 97.2%. The average segmentation speeds in lung CT images were 0.289 s/sheet, 0.115 s/sheet, 0.108 s/sheet, and 0.089 s/sheet. The improved deep learning model showed higher accuracy, better robustness, and faster speed than other algorithms in the LPS of CT images. In summary, deep learning can achieve the LPS of CT images and show excellent segmentation efficiency. The texture parameters of GLCM in CT images have excellent differential diagnosis performance for NSCLC and SCLC and potential clinical application value.

Keywords: lung cancer; peripheral non; non small; lung; model

Journal Title: Journal of Healthcare Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.