LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

miR-559 Inhibits Proliferation, Autophagy, and Angiogenesis of Hepatocellular Carcinoma Cells by Targeting PARD3

Photo by art_almighty from unsplash

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and has a high mortality rate. Although prevention and treatment of HCC has improved, it still faces… Click to show full abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and has a high mortality rate. Although prevention and treatment of HCC has improved, it still faces poor prognosis and high mortality. miRNAs play a critical role in the tumorigenesis of HCC, but the underlying mechanism has not been well investigated. Here, the functions and interaction between miR-559 and PARD3 were investigated in HCC cells. Increased PARD3 and decreased miR-559 expression were observed in HCC cells compared with those in normal liver cells, especially in Huh-7 cells. Studies further demonstrated that PARD3 silencing or miR-559 overexpression impaired the proliferation, autophagy, and angiogenesis in Huh-7 cells. Mechanistically, PARD3 represents a target of miR-559. Furthermore, investigations revealed that miR-559 inhibition induced the expression of PARD3, thereby enhancing cell proliferation, autophagy, and angiogenesis in Huh-7 cells. These results reveal the interaction between miR-559 and PARD3 in HCC cells and provide new insights into their potential targets as therapeutic treatment against HCC.

Keywords: autophagy angiogenesis; pard3; mir 559; proliferation autophagy

Journal Title: Mediators of Inflammation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.