LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N-myc Downstream-Regulated Gene 1 (NDRG1) Regulates Vascular Endothelial Growth Factor A (VEGFA) and Malignancies in Glioblastoma Multiforme (GBM)

Photo from wikipedia

Background NDRG1 has been reported to exhibit relatively low expression levels in glioma tissues compared with adjacent brain tissues. Additionally, NDRG1 is reported to be a tumor suppressor with the… Click to show full abstract

Background NDRG1 has been reported to exhibit relatively low expression levels in glioma tissues compared with adjacent brain tissues. Additionally, NDRG1 is reported to be a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. However, its exact roles in GBM are still unknown. Methods Gene Expression Profiling Interactive Analysis (GEPIA) was employed to evaluate the expression level of NDRG1 in GBM. After the introduction of NDRG1, proliferation, analyses of colony formation, migration, and invasion capacities were performed. A luciferase reporter assay was performed to detect the effect of NDRG1 on the vascular endothelial growth factor A (VEGFA) promoter. Results In this study, data from GBM and healthy individuals were retrospectively collected by employing GBM, and VEGFA was found to be differentially expressed in GBM tissues compared with adjacent brain tissues. Furthermore, NDRG1 expression is positively correlated with VEGFA expression, but not expression of the other two VEGF isoforms, VEGFB and VEGFC. In the glioma cell lines U87MG and U118, overexpression of NDRG1 significantly upregulated VEGFA. By performing a dual-luciferase reporter assay, it was observed that overexpressed NDRG1 transcriptionally activated VEGFA. Expectedly, overexpression of NDRG1 decreased cell viability by blocking cell cycle phases at G1 phase. Additionally, overexpression of NDRG1 inhibited invasion, colony formation, and tumor formation in soft agar. Remarkably, VEGFA silencing or blockade of VEGF receptor 2 (VEGFR2) further inhibited malignant behaviors in soft agar, including proliferation, invasion, colony formation, and tumor formation. Conclusions NDRG1-induced VEGFA exerts protective effects in GBM via the VEGFA/VEGFR2 pathway. Therefore, targeting both NDRG1 and VEGFA may represent a novel therapy for the treatment of GBM.

Keywords: expression; endothelial growth; gbm; formation; vegfa; vascular endothelial

Journal Title: BioMed Research International
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.