Different ethnomedical benefits have been documented on different parts of Ackee (Blighia sapida); however, their roles in ameliorating oxidative damages are not well established. CdCl2 inhibitory effects on some oxidative-stress… Click to show full abstract
Different ethnomedical benefits have been documented on different parts of Ackee (Blighia sapida); however, their roles in ameliorating oxidative damages are not well established. CdCl2 inhibitory effects on some oxidative-stress biomarkers and ameliorative potentials of Ackee leaves (AL) and arils (AS) methanolic extracts were studied using Drosophila melanogaster as a model. One to 3-day-old D. melanogaster flies were orally exposed to different concentrations of CdCl2 in their diet for 7 days. The fly's survival profile and negative geotaxis assays were subsequently analysed. Methanolic extracts of AL and AS treatments showed negative geotaxis behaviour, and extracts were able to ameliorate the effect of Cd2+ on catalase and GST activities and increase total thiol and GSH levels, while it reduced the H2O2 generation (p ≤ 0.05) when compared to the control. Furthermore, Cd2+ exhibited noncompetitive and uncompetitive enzyme inhibition on catalase and GST activities, respectively, which may have resulted in the formation of Enzyme-substrate-Cd2+ transition complexes, thus inhibiting the conversion of substrate to product. This study, thus, suggests that the Cd2+ mechanism of toxicity was associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant imbalance, and that the AL and AS extracts possess essential phytochemicals that could alleviate possibly deleterious oxidative damage effects of environmental pollutants such as CdCl2. Thus, Ackee plant parts possess essential phytonutrients which could serve as valuable resources in heavy metal toxicity management.
               
Click one of the above tabs to view related content.