LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

hucMSC-sEVs-Derived 14-3-3ζ Serves as a Bridge between YAP and Autophagy in Diabetic Kidney Disease

As nanoscale membranous vesicles, human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEVs) have attracted extensive attention in the field of tissue regeneration. Under the premise that the mechanisms… Click to show full abstract

As nanoscale membranous vesicles, human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hucMSC-sEVs) have attracted extensive attention in the field of tissue regeneration. Under the premise that the mechanisms of hucMSC-sEVs on the treatment of diabetic kidney disease (DKD) have not been revealed clearly, we constructed DKD rat model with success. After tail vein injection, hucMSC-sEVs effectively reduced blood glucose, maintained body weight and improved renal function in DKD rats. Notably, we found that hucMSC-sEVs suppressed YAP expression in renal cortical regions. Further in vitro experiments, we confirmed that the expression of YAP in the nucleus of renal podocytes was increased, and the level of autophagy was inhibited in the high-glucose environment, which could be reversed by intervention with hucMSC-sEVs. We screened out the key protein 14-3-3ζ, which could not only promote YAP cytoplasmic retention instead of entering the nucleus, but also enhance the level of autophagy in the cytoplasm. Ultimately, excessive YAP protein was removed by autophagy, a classic way of protein degradation. In conclusion, our study provides new strategies for the prevention of DKD and proposes the possibility of hucMSC-sEVs becoming a new treatment for DKD in the future.

Keywords: kidney disease; diabetic kidney; hucmsc sevs; sevs

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.