LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decision Scheduling for Cloud Computing Tasks Relying on Solving Large Linear Systems of Equations

Photo by garri from unsplash

With the continuous reform and innovation of Internet technology and the continuous development and progress of social economy, Big Data cloud computing technology is more and more widely used in… Click to show full abstract

With the continuous reform and innovation of Internet technology and the continuous development and progress of social economy, Big Data cloud computing technology is more and more widely used in people's work and life. Many parallel algorithms play a very important role in solving large linear equations in various applications. To this end, this article aims to propose and summarize a cloud computing task scheduling model that relies on the solution of large linear equations. The method of this paper is to study the technology of solving large-scale linear equations and propose an M-QoS-OCCSM scheduling model. The function of the experimental method is to solve the problem of efficiently executing N mutually dependent parallel tasks within limited resources, while fully satisfying users' expectations of task completion time, bandwidth rate, reliability, and cost. In this paper, the application experiment of large-scale linear equations in task scheduling is used to study task scheduling algorithms. The results show that when the task load is 10 and 20, the convergence speed of the MPQGA algorithm is 32 seconds and 95 seconds faster than that of the BGA algorithm, respectively.

Keywords: task scheduling; decision scheduling; large linear; solving large; cloud computing; linear equations

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.