LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Endothelial MicroRNA-483-3p Is Hypertension-Protective

Photo from wikipedia

Hypertension is a high-risk factor for developing coronary heart disease and stroke. Endothelial dysfunction and arterial remodeling can lead to increased vascular wall thickness and arterial stiffness. Previous studies showed… Click to show full abstract

Hypertension is a high-risk factor for developing coronary heart disease and stroke. Endothelial dysfunction and arterial remodeling can lead to increased vascular wall thickness and arterial stiffness. Previous studies showed that microRNA-483 (miR-483) enhances endothelial cell (EC) function. Here, we investigated the protective role of miR-483 in hypertension. Data collected from two patient cohorts showed that the serum miR-483-3p level was associated with the progression of hypertension and positively correlated with vascular function. In cultured ECs, miR-483 targets a number of endothelial dysfunction-related genes, such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), angiotensin-converting enzyme 1 (ACE1), and endothelin-1 (ET-1). Overexpression of miR-483-3p in ECs inhibited Ang II-induced endothelial dysfunction, revealed by the decreased expression of TGF-β, CTGF, ACE1, and ET-1. Furthermore, miR-483-3p secreted from ECs was taken up by smooth muscle cells (SMCs) via the exosome pathway, which also decreased these genes in SMCs. Additionally, telmisartan could increase the aortic and serum levels of miR-483-3p in hypertension patients and spontaneous hypertension rats (SHR). These findings suggest that miR-483-3p exerts a protective effect on EC function during the onset of hypertension and thus may be considered a potential therapeutic target for hypertension-related cardiovascular diseases.

Keywords: mir 483; 483 hypertension; microrna 483; hypertension; endothelial dysfunction

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.