LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparative Biomechanical Analysis of the Impact of Different Configurations of Pedicle-Screw-Based Fixation in Thoracolumbar Compression Fracture

Photo from wikipedia

The aim of this experimental study was to analyze the impact of applying different configurations of the transpedicular fixation system on selected mechanical parameters of the thoracolumbar spine under conditions… Click to show full abstract

The aim of this experimental study was to analyze the impact of applying different configurations of the transpedicular fixation system on selected mechanical parameters of the thoracolumbar spine under conditions of its instability (after simulated fracture). Five study groups were tested: physiological, with compression fracture of the vertebra, with two-segment fixation, with three-segment fixation, and with four-segment fixation. Each of the analyzed study groups was subjected to axial compression, flexion, and extension. Based on the conducted experimental tests, the mechanical parameters, i.e., stiffness coefficient and dissipation energy, were determined for all groups under consideration. The stiffness value of two-segment fixation is significantly lower than the physiological value (during flexion and extension). The use of long-segment fixation considered in two configurations (three- and four-segment fixation) may result in excessive stiffness of the system due to the high stiffness values achieved (approx. 25–30% higher than the physiological values in the case of compression and on average 60% higher in the case of flexion). The use of long-segment fixator design shows better results than short-segment fixation. Considering both biomechanical and clinical aspects, three-segment fixation seems to be a compromise solution as it saves the patient from more extensive stiffening of the spinal motion segments.

Keywords: fracture; segment fixation; different configurations; segment; compression; fixation

Journal Title: Applied Bionics and Biomechanics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.