Premature ovarian failure refers to a series of symptoms of perimenopausal hot flashes, night sweats, decreased libido, vaginal dryness, insomnia, reduced menstruation, sparse hair, even amenorrhea, and even infertility before… Click to show full abstract
Premature ovarian failure refers to a series of symptoms of perimenopausal hot flashes, night sweats, decreased libido, vaginal dryness, insomnia, reduced menstruation, sparse hair, even amenorrhea, and even infertility before the age of 40 due to the decline of ovarian function. Premature ovarian failure is a common and difficult disease in gynecology. Its prevalence is increasing gradually, and the trend is younger. The aim of this experiment was to elucidate the role of human umbilical cord mesenchymal stem cells (HUCMSCs) in premature ovarian failure and its mechanism. HUCMSCs, KGN cells, and HEK293T cells were used in this experiment. Quantitative PCR and microarray analysis, ELISA inflammation and oxidative stress kits, RNA pull-down assay, luciferase reporter assay, proliferation assay, EDU staining, and Western blot analysis were used. In an in vitro model of premature ovarian failure, HUCMSCs attenuated inflammatory response, oxidative stress, and apoptosis. HUCMSCs ameliorated the premature ovarian failure model. The miR-100-5p expression was induced by HUCMSCs through methylation. miR-100-5p regulation influenced the role of HUCMSCs in an in vitro model of premature ovarian failure. HUCMSCs inhibited the in vitro expression of NOX4, NLRP3, and GSDMD proteins in the model. NOX4/NLRP3 signaling pathway affects the role of HUCMSCs in an in vitro model of premature ovarian failure through miR-100-5p. This experiment elucidated the role of HUCMSCs in premature ovarian failure and its mechanism, with a view to providing a clinical reference.
               
Click one of the above tabs to view related content.