LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BA-GCA Net: Boundary-Aware Grid Contextual Attention Net in Osteosarcoma MRI Image Segmentation

Photo by vidarnm from unsplash

Osteosarcoma is one of the most common bone tumors that occurs in adolescents. Doctors often use magnetic resonance imaging (MRI) through biosensors to diagnose and predict osteosarcoma. However, a number… Click to show full abstract

Osteosarcoma is one of the most common bone tumors that occurs in adolescents. Doctors often use magnetic resonance imaging (MRI) through biosensors to diagnose and predict osteosarcoma. However, a number of osteosarcoma MRI images have the problem of the tumor shape boundary being vague, complex, or irregular, which causes doctors to encounter difficulties in diagnosis and also makes some deep learning methods lose segmentation details as well as fail to locate the region of the osteosarcoma. In this article, we propose a novel boundary-aware grid contextual attention net (BA-GCA Net) to solve the problem of insufficient accuracy in osteosarcoma MRI image segmentation. First, a novel grid contextual attention (GCA) is designed to better capture the texture details of the tumor area. Then the statistical texture learning block (STLB) and the spatial transformer block (STB) are integrated into the network to improve its ability to extract statistical texture features and locate tumor areas. Over 80,000 MRI images of osteosarcoma from the Second Xiangya Hospital are adopted as a dataset for training, testing, and ablation studies. Results show that our proposed method achieves higher segmentation accuracy than existing methods with only a slight increase in the number of parameters and computational complexity.

Keywords: osteosarcoma; contextual attention; segmentation; mri; grid contextual; osteosarcoma mri

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.