LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Feature Analysis Approach to Selecting Channels of EEG for Fatigue Driving

Photo by robertbye from unsplash

Fatigued driving is a significant contributor to traffic accidents. There are some issues with common EEG data of 32 channels, 64 channels, and 128 channels, such as difficult acquisition, high… Click to show full abstract

Fatigued driving is a significant contributor to traffic accidents. There are some issues with common EEG data of 32 channels, 64 channels, and 128 channels, such as difficult acquisition, high data redundancy, and difficult practical application. A new channel selection method called ReliefF_SFS is proposed to address the problem of how to reduce the number of channels while maintaining classification accuracy. It combines the ReliefF algorithm and the sequential forward selection (SFS) algorithm. When only T6, O1, Oz, T4, P3, and FC3 are used, the classification accuracy under Theta_Std+FE combined with ReliefF_SFS achieves 99.45%. The strategy suggested in this paper not only ensures the recognition accuracy but also reduces the number of channels when compared to other models based on the same data set.

Keywords: approach selecting; new feature; selecting channels; feature analysis; channels eeg; analysis approach

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.