LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Functional Genes in Primary Varicose Great Saphenous Veins Using the lncRNA-miRNA-mRNA Network

Photo by matnapo from unsplash

Background Long noncoding RNAs (lncRNAs) have been widely suggested to bind with the microRNA (miRNA) sites and play roles of competing endogenous RNAs (ceRNAs), which can thus affect and regulate… Click to show full abstract

Background Long noncoding RNAs (lncRNAs) have been widely suggested to bind with the microRNA (miRNA) sites and play roles of competing endogenous RNAs (ceRNAs), which can thus affect and regulate target gene and mRNA expression. Such lncRNA-related ceRNAs are identified to exert vital parts in vascular disease. Nonetheless, it remains unknown about how the lncRNA-miRNA-mRNA network functions in the varicose great saphenous veins. Methods This study acquired the lncRNA and mRNA expression patterns from the GEO database and identifies the differentially expressed mRNAs and lncRNAs by adopting the R software “limma” package. Then, miRcode, miRDB, miRTarbase, and TargetScan were used to establish the miRNA-mRNA pairs and lncRNA-miRNA pairs. In addition, the lncRNA-miRNA-mRNA ceRNA network was constructed by using Cytoscape. Protein-protein interaction, Gene Ontology functional annotations, and Kyoto Encyclopedia of Genes and Genomes enrichment were carried out to examine the candidate hub genes, the functions of genes, and the corresponding pathways. Results In line with the preset theory, we constructed ceRNA network comprising 12 lncRNAs, 38 miRNAs, and 149 mRNAs. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/Akt signaling pathway played a vital part in the development of varicose great saphenous veins. AC114730, AC002127, and AC073342 were significant biomarkers. At the same time, we predicted the potential miRNA, which may exert a significant influence on the varicose great saphenous veins, namely, miR-17-5p, miR-129-5p, miR-1297, miR-20b-5p, and miR-33a-3p. Conclusion By performing ceRNA network analysis, our study detects new lncRNAs, miRNAs, and mRNAs, which can be applied as underlying biomarkers of varicose great saphenous veins and as therapeutic targets for the treatment of varicose great saphenous veins.

Keywords: saphenous veins; network; mirna mrna; great saphenous; lncrna mirna; varicose great

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.