Spinal cord ischemia-reperfusion injury (SCII) is one of the most serious complications of clinical aortic aneurysm and vascular malformation surgery. Long noncoding RNA (lncRNA) is involved in the progression of… Click to show full abstract
Spinal cord ischemia-reperfusion injury (SCII) is one of the most serious complications of clinical aortic aneurysm and vascular malformation surgery. Long noncoding RNA (lncRNA) is involved in the progression of SCII, whereas long noncoding RNA HOX transcript antisense RNA (lncRNA HOTAIR) is unclear in SCII. This study is aimed at confirming the role and related mechanism of HOTAIR in SCII. Later on, a model of SCII was established by clamping the aortic arch for 14 minutes. RNA expression of HOTAIR was detected via qRT-PCR at 12 h, 24 h, 36 h, and 48 h after SCII. The Tarlov scoring system and TUNEL assay were used to evaluate neurological function and neuronal apoptosis. Oxidative stress factor levels were assessed according to the instructions of the kit. Inflammatory cytokines were assessed by ELISA. Western blot was used to detect levels of p65, p-p65, I-κBα, and p-I-κBα. We found HOTAIR was raised in SCII rats. si-HOTAIR was able to reverse SCII-induced oxidative stress in SCII rats. The HMGB1 expression was upregulated in SCII tissues and negatively correlated with HOTAIR. HMGB1 was able to partially reverse si-HOTAIR inhibition of oxidative stress, inflammatory injury, and neuronal cell apoptosis in SCII. In addition, the ROS/NF-κB signaling pathway is involved in HOTAIR/HMGB1 regulation of SCII. In a word, HOTAIR inhibition is able to inhibit oxidative stress, inflammatory injury, and neuronal apoptosis in SCII through downregulation of the high mobility group protein B1(HMGB1), which is achieved by inhibiting the ROS/NF-κB signaling pathway. The HOTAIR/HMGB1/ROS/NF-κB molecular pathway may be a new mechanism for the treatment of SCII.
               
Click one of the above tabs to view related content.