In this work, we propose AGKN (attention-based graph learning kernel network), a novel framework to incorporate information of correlated firms of a target stock for its price prediction in an… Click to show full abstract
In this work, we propose AGKN (attention-based graph learning kernel network), a novel framework to incorporate information of correlated firms of a target stock for its price prediction in an end-to-end way. We first construct a stock-axis attention module to extract dynamic and asymmetric spatial correlations through the kernel method and a graph learning module into which more accurate information can be integrated. An ensemble time-axis attention module is then applied to learn temporal correlations within each stock and market index. Finally, we utilize a transformer encoder to jointly attend to obtain information from different levels for correlations' aggregation and prediction. Experiments with data collected from the Chinese stock market show that AGKN outperforms state-of-the-art baseline methods, making up to 4.3% lower error than the best competitors. The ablation study shows that AGKN pays more attention to hidden correlation between stocks, which improves model's performance greatly.
               
Click one of the above tabs to view related content.