LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and Optical Properties of Compound Nanopowder Art Ceramics

Photo from wikipedia

The fluorescent glass of white LEDs has high physical and chemical stabilities, good heat dissipation performance, and can maintain an excellent performance of fluorescent powder itself. In order to realize… Click to show full abstract

The fluorescent glass of white LEDs has high physical and chemical stabilities, good heat dissipation performance, and can maintain an excellent performance of fluorescent powder itself. In order to realize luminescent materials such as white LED lighting, laser lighting, and long-term lighting, this study proposes the preparation of a compound nanopowder art ceramic and its optical properties. In order to play the role of nanoparticles in optoelectronic or photonic devices, it is necessary to explore the preparation process and performance research of dielectric ceramics. This study uses high-purity aluminate (MgAl2O4) powder for transparent ceramics, doped with yellow nanophosphor as raw materials, through a sintering process in oxygen atmosphere, sintering combined with heat treatment, and isostatic pressing to prepare transparent ceramics. The ceramic sample is placed in a high-temperature and high-pressure environment for heat and other static pressure, and fluorescent samples are obtained. The results show that under 350 mA driving current, high-power white LEDs in the fluorescent ceramic package have almost no attenuation after 700 h, and the average attenuation of the LED package of the phosphor package is about 10%. The use of fluorescent ceramics can be packaged not only to improve the LED device's light efficiency but also to increase the life of the white LED device.

Keywords: preparation optical; preparation; properties compound; compound nanopowder; nanopowder art; optical properties

Journal Title: International Journal of Analytical Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.