This paper analyzes the quantitative assessment model of the swimming training effect based on the deep neural network by constructing a deep neural network model and designing a quantitative assessment… Click to show full abstract
This paper analyzes the quantitative assessment model of the swimming training effect based on the deep neural network by constructing a deep neural network model and designing a quantitative assessment model of the swimming training effect. This paper addresses the problem of not considering the influence of the uncertainties existing in the virtual environment when evaluating swimming training and adds the power of the delays in the actual training operation environment, which is used to improve the objectivity and usability of swimming training evaluation results. To better measure the degree of influence of uncertainties, a training evaluation software module is developed to validate the usability of the simulated training evaluation method using simulated case data and compare it with the data after training evaluation using the unimproved evaluation method to verify the correctness and objectivity of the evaluation method in this paper. In the experiments, the feature extractor is a deep neural network, and the classifier is a gradient-boosting decision tree with integrated learning advantages. In the experimental comparison, we can achieve more than 60% accuracy and no more than a 1.00% decrease in recognition rate on DBPNN + GBDT, 78.5% parameter reduction, and 54.5% floating-point reduction on DPBNN. We can effectively reduce 32.1% of video memory occupation. It can be concluded from the experiments that deep neural network models are more effective and easier to obtain relatively accurate experimental results than shallow learning when facing high-dimensional sparse features. At the same time, deep neural networks can also improve the prediction results of external learning models. Therefore, the experimental results of this model are most intuitively accurate when combining deep neural networks with gradient boosting decision trees.
               
Click one of the above tabs to view related content.