LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting the Physician's Specialty Using a Medical Prescription Database

Photo from wikipedia

Purpose The present study is aimed at predicting the physician's specialty based on the most frequent two medications prescribed simultaneously. The results of this study could be utilized in the… Click to show full abstract

Purpose The present study is aimed at predicting the physician's specialty based on the most frequent two medications prescribed simultaneously. The results of this study could be utilized in the imputation of the missing data in similar databases. Patients and Methods. The research is done through the KAy-means for MIxed LArge datasets (KAMILA) clustering and random forest (RF) model. The data used in the study were retrieved from outpatients' prescriptions in the second populous province of Iran (Khorasan Razavi) from April 2015 to March 2017. Results The main findings of the study represent the importance of each combination in predicting the specialty. The final results showed that the combination of amoxicillin-metronidazole has the highest importance in making an accurate prediction. The findings are provided in a user-friendly R-shiny web application, which can be applied to any medical prescription database. Conclusion Nowadays, a huge amount of data is produced in the field of medical prescriptions, which a significant section of that is missing in the specialty. Thus, imputing the missing variables can lead to valuable results for planning a medication with higher quality, improving healthcare quality, and decreasing expenses.

Keywords: medical prescription; specialty; predicting physician; prescription database; physician specialty

Journal Title: Computational and Mathematical Methods in Medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.