LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Adsorption Potential of Cr from Water by ZnO Nanoparticles Synthesized by Azolla pinnata

Photo from wikipedia

Aqueous solutions containing toxic elements (TEs) (such as hexavalent chromium (Cr (VI)) can be toxic to humans even at trace levels. Thus, removing TEs from the aqueous environment is essential… Click to show full abstract

Aqueous solutions containing toxic elements (TEs) (such as hexavalent chromium (Cr (VI)) can be toxic to humans even at trace levels. Thus, removing TEs from the aqueous environment is essential for the protection of biodiversity, hydrosphere ecosystems, and humans. For plant fabrication of zinc oxide nanoparticles (PF-ZnONPs), Azolla pinnata plants were used, and X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), SEM, and FTIR techniques were used for the identification of PF-ZnONPs and ZnONPs, which were used to remove Cr (VI) from aqueous solution. A number of adsorption parameters were studied, including pH, dose, concentration of metal ions, and contact time. The removal efficiency of PF-ZnONPs for Cr (VI) has been found to be 96% at a time (60 min), 69.02% at pH 4, and 70.43% at a dose (10 mg·L−1). It was found that the pseudo-second-order model best described the adsorption of Cr (VI) onto PF-ZnONPs, indicating a fast initial adsorption via diffusion. The experimental data were also highly consistent with the Langmuir isotherm model calculations.

Keywords: adsorption; potential water; adsorption potential; znonps; azolla pinnata

Journal Title: Bioinorganic Chemistry and Applications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.