LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification Method of Citrus Aurantium Diseases and Pests Based on Deep Convolutional Neural Network

Photo by dulhiier from unsplash

The traditional identification methods of Citrus aurantium diseases and pests are prone to convergence during the running process, resulting in low accuracy of identification. To this end, this study reviews… Click to show full abstract

The traditional identification methods of Citrus aurantium diseases and pests are prone to convergence during the running process, resulting in low accuracy of identification. To this end, this study reviews the newest methods for the identification of Citrus aurantium diseases and pests based on a deep convolutional neural network (DCNN). The initial images of Citrus aurantium leaves are collected by hardware equipment and then preprocessed using the techniques of cropping, enhancement, and morphological transformation. By using the neural network to divide the disease spots of Citrus aurantium images, accurate recognition results are obtained through feature matching. The comparative experimental results show that, compared with the traditional recognition method, the recognition rate of the proposed method has increased by about 11.9%, indicating its better performance. The proposed method can overcome the interference of the external environment to a certain extent and can provide reference data for the prevention and control of Citrus aurantium diseases and pests.

Keywords: neural network; aurantium diseases; identification; aurantium; citrus aurantium; diseases pests

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.