LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Activation of LRP6 with HLY78 Attenuates Oxidative Stress and Neuronal Apoptosis via GSK3β/Sirt1/PGC-1α Pathway after ICH

Photo from wikipedia

Background Oxidative stress and neuronal apoptosis have important roles in the pathogenesis after intracerebral hemorrhage (ICH). Previous studies have reported that low-density lipoprotein receptor-related protein 6 (LRP6) exerts neuroprotection in… Click to show full abstract

Background Oxidative stress and neuronal apoptosis have important roles in the pathogenesis after intracerebral hemorrhage (ICH). Previous studies have reported that low-density lipoprotein receptor-related protein 6 (LRP6) exerts neuroprotection in several neurological diseases. Herein, we investigate the role of LRP6 receptor activation with HLY78 to attenuate oxidative stress and neuronal apoptosis after ICH, as well as the underlying mechanism. Methods A total of 199 CD1 mice were used. ICH was induced via injection of autologous blood into the right basal ganglia. HLY78 was administered via intranasal injection at 1 h after ICH. To explore the underlying mechanism, LRP6 siRNA and selisistat, a Sirt1 selective antagonist, were injected intracerebroventricularly at 48 h before ICH induction. Neurobehavioral tests, Western blot, and immunofluorescence staining were performed. Results The expression of endogenous p-LRP6 was gradually increased and expressed on neurons after ICH. HLY78 significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased oxidative stress and neuronal apoptosis, as well as increased expression of p-GSK3β, Sirt1, and PGC-1α, as well as downregulation of Romo-1 and C-Caspase-3. LRP6 knockdown or Sirt1 inhibition abolished these effects of HLY78 after ICH. Conclusion Our results suggest that administration of HLY78 attenuated oxidative stress, neuronal apoptosis, and neurobehavioral impairments through the LRP6/GSK3β/Sirt1/PGC-1α signaling pathway after ICH.

Keywords: neuronal apoptosis; lrp6; oxidative stress; stress neuronal

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.