Background Gliomas are one of the most prevalent malignant brain tumors. Hence, identifying biological markers for glioma is imperative. TTC7B (Tetratricopeptide Repeat Domain 7B) is a gene whose role in… Click to show full abstract
Background Gliomas are one of the most prevalent malignant brain tumors. Hence, identifying biological markers for glioma is imperative. TTC7B (Tetratricopeptide Repeat Domain 7B) is a gene whose role in cancer in currently identified. To this end, we examined the TTC7B expression as well as its prognostic significance, biological roles, and immune system impacts in patients with glioma. Methods We evaluated the function of TTC7B in GBM and LGG through the published CGGA (Chinese Glioma Genome Atlas) and TCGA (The Cancer Genome Atlas) databases. CIBERSORT and TIMER were used to analyze the link between TTC7B and immune cells, while R was used for statistical analysis. In addition, Transwell analysis, including migration and invasion assays, was performed to identify the relationship between TTC7B and temozolomide. Results Low expression of TTC7B was observed in GBM and LGG. 1p/19q codeletion, IDH mutation, chemotherapy, and grade were found to have a significant correlation with TTC7B. Besides, low TTC7B expression was linked with low overall survival (OS) in both GBM and LGG. In the Cox analysis, TTC7B was found to independently function as a risk element for OS of patients with glioma. Furthermore, CIBERSORT analysis demonstrated a positive link between TTC7B and multiple immune cells, especially activated NK cells. Transwell analysis, including migration and invasion assays, revealed that temozolomide reduced the migration and invasion capacity of glioma cells and increased the expression of TTC7B. Conclusion In all, TTC7B could serve as a promising prognostic indicator of LGG and GBM, and is closely associated with immune infiltration and response to oxidative stress by temozolomide.
               
Click one of the above tabs to view related content.