LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Framework on Performance Analysis of Mathematical Model-Based Classifiers in Detection of Epileptic Seizure from EEG Signals with Efficient Feature Selection

Photo from wikipedia

Epilepsy is one of the neurological conditions that are diagnosed in the vast majority of patients. Electroencephalography (EEG) readings are the primary tool that is used in the process of… Click to show full abstract

Epilepsy is one of the neurological conditions that are diagnosed in the vast majority of patients. Electroencephalography (EEG) readings are the primary tool that is used in the process of diagnosing and analyzing epilepsy. The epileptic EEG data display the electrical activity of the neurons and provide a significant amount of knowledge on pathology and physiology. As a result of the significant amount of time that this method requires, several automated classification methods have been developed. In this paper, three wavelets such as Haar, dB4, and Sym 8 are employed to extract the features from A–E sets of the Bonn epilepsy dataset. To select the best features of epileptic seizures, a Particle Swarm Optimization (PSO) technique is applied. The extracted features are further classified using seven classifiers like linear regression, nonlinear regression, Gaussian Mixture Modeling (GMM), K-Nearest Neighbor (KNN), Support Vector Machine (SVM-linear), SVM (polynomial), and SVM Radial Basis Function (RBF). Classifier performances are analyzed through the benchmark parameters, such as sensitivity, specificity, accuracy, F1 Score, error rate, and g-means. The SVM classifier with RBF kernel in sym 8 wavelet features with PSO feature selection method attains a higher accuracy rate of 98% with an error rate of 2%. This classifier outperforms all other classifiers.

Keywords: framework performance; eeg; performance analysis; analysis mathematical; feature selection

Journal Title: Journal of Healthcare Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.