LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of CNN Algorithms for Feature Extraction on Fundus Images to Detect Glaucoma

Photo from wikipedia

Glaucoma is a disease where the optic nerve of the eyes is smashed up due to the building up of pressure inside the vision point. This has no symptoms at… Click to show full abstract

Glaucoma is a disease where the optic nerve of the eyes is smashed up due to the building up of pressure inside the vision point. This has no symptoms at the initial stages, and hence, patients with this disease cannot identify them at the beginning stage. It is explained as if the pressure in the eye increases, then it will hurt the optic nerve which sends images to the brain. This will lead to permanent vision loss or total blindness. The existing method used for the detection of glaucoma includes k-nearest neighbour and support vector machine algorithms. The k-nearest neighbour algorithm and support vector machine algorithm are the machine learning methods for both categorization and degeneration problems. The drawback in using these algorithms is that we can get accuracy level only up to 80%. The proposed methods in this study focus on the convolution neural network for the recognition of glaucoma. In this study, 2 architectures of VGG, Inception method, AlexNet, GoogLeNet, and ResNet architectures which provide accuracy levels up to 100% are presented.

Keywords: cnn algorithms; glaucoma; comparison cnn; feature extraction; algorithms feature; extraction fundus

Journal Title: Journal of Healthcare Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.