LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of Pneumonia Infection by Using Deep Learning on a Mobile Platform

Photo from wikipedia

Pneumonia is a disease that spreads quickly and poses a serious risk to the health and well-being of its victims. An accurate biomedical diagnosis of pneumonia necessitates the use of… Click to show full abstract

Pneumonia is a disease that spreads quickly and poses a serious risk to the health and well-being of its victims. An accurate biomedical diagnosis of pneumonia necessitates the use of various diagnostic tools and the evaluation of various clinical features, all of which are hindered by the lack of available experts and tools. According to the research presented here, a mobile app that uses deep learning techniques to classify whether or not a patient has pneumonia is being developed. It was hoped that a mobile application prototype for detecting pneumonia using neural networks would be developed as part of this study. The use of a high-level tool such as Create ML makes this process easier and eliminates issues such as how many layers a neural network has, initializing the model parameters, or which algorithms to use. The model can now be accessed by anyone, anywhere, via a mobile application. The dataset of more than 5,000 real images was used to train an image classification model using Create ML, a tool with a graphical interface, and there was no need for specialized knowledge.

Keywords: infection using; detection pneumonia; pneumonia; pneumonia infection; deep learning; using deep

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.