LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Butein Inhibits Oxidative Stress Injury in Rats with Chronic Heart Failure via ERK/Nrf2 Signaling

Photo from wikipedia

Background Chronic heart failure (CHF) is a serious heart disease resulting from cardiac dysfunction. Oxidative stress is an important factor in aging and disease. Butein, however, has antioxidant properties. To… Click to show full abstract

Background Chronic heart failure (CHF) is a serious heart disease resulting from cardiac dysfunction. Oxidative stress is an important factor in aging and disease. Butein, however, has antioxidant properties. To determine the effect of butein on oxidative stress injury in rats, a CHF rat model was established. Methods The CHF rat model was induced by abdominal aortic coarctation (AAC). Rats in CHF+butein and sham+butein group were given 100 mg/kg butein via gavage every day to detect the effect of butein on oxidative stress injury and myocardial dysfunction. The cardiac structural and functional parameters, including the left ventricular end-systolic dimension (LVESD), the left ventricular end-diastolic dimension (LVEDD), the left ventricular ejection fraction (LVEF), and the left ventricular fractional shortening (LVFS), were measured. Oxidative stress was measured through the production of reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA). Cardiac injury markers like creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) were evaluated. Hematoxylin and eosin (H&E) staining was used to observe the myocardial cell morphology. The effect of butein on the extracellular signal-regulated kinase (ERK)/nuclear factor-E2 p45-related factor (Nrf2) signaling was confirmed by Western blot analysis. Results Butein had a significant effect on CHF in animal models. In detail, butein inhibited oxidative stress, relieved cardiac injury, and alleviated myocardial dysfunction. Importantly, butein activated the ERK1/2 pathway, which contributed to Nrf2 activation and subsequent heme oxygenase-1 (HO-1) and glutathione cysteine ligase regulatory subunit (GCLC) induction. Conclusions In this study, butein inhibits oxidative stress injury in CHF rat model via ERK/Nrf2 signaling pathway.

Keywords: stress injury; nrf2 signaling; oxidative stress; heart; injury

Journal Title: Cardiovascular Therapeutics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.