LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Template-Aware Transformer for Person Reidentification

Photo from wikipedia

Person reidentification (ReID) is a challenging computer vision task for identifying or verifying one or more persons when the faces are not available. In ReID, the indistinguishable background usually affects… Click to show full abstract

Person reidentification (ReID) is a challenging computer vision task for identifying or verifying one or more persons when the faces are not available. In ReID, the indistinguishable background usually affects the model's perception of the foreground, which reduces the performance of ReID. Generally, the background of the same camera is similar, whereas that of different cameras is quite different. Based on this finding, we propose a template-aware transformer (TAT) method which can learn intersample indistinguishable features by introducing a learnable template for the transformer structure to cut down the model's attention to regions of the image with low discrimination, including backgrounds and occlusions. In the multiheaded attention module of the encoder, this template directs template-aware attention to indistinguishable features of the image and gradually increases the attention to distinguishable features as the encoder block deepens. We also increase the number of templates using side information considering the characteristics of ReID tasks to adapt the model to backgrounds that vary significantly with different camera IDs. Finally, we demonstrate the validity of our theories using various public data sets and achieve competitive results via a quantitative evaluation.

Keywords: aware transformer; template aware; template; person reidentification

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.