LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Empirical Analysis for Stock Price Prediction Using NARX Model with Exogenous Technical Indicators

Photo by purebonebroth from unsplash

Stock price prediction is one of the major challenges for investors who participate in the stock markets. Therefore, different methods have been explored by practitioners and academicians to predict stock… Click to show full abstract

Stock price prediction is one of the major challenges for investors who participate in the stock markets. Therefore, different methods have been explored by practitioners and academicians to predict stock price movement. Artificial intelligence models are one of the methods that attracted many researchers in the field of financial prediction in the stock market. This study investigates the prediction of the daily stock prices for Commerce International Merchant Bankers (CIMB) using technical indicators in a NARX neural network model. The methodology employs comprehensive parameter trails for different combinations of input variables and different neural network designs. The study seeks to investigate the optimal artificial neural networks (ANN) parameters and settings that enhance the performance of the NARX model. Therefore, extensive parameter trails were studied for various combinations of input variables and NARX neural network configurations. The proposed model is further enhanced by preprocessing and optimising the NARX model's input and output parameers. The prediction performance is assessed based on the mean squared error (MSE), R-squared, and hit rate. The performance of the proposed model is compared with other models, and it is shown that the utilisation of technical indicators with the NARX neural network improves the accuracy of one-step-ahead prediction for CIMB stock in Malaysia. The performance of the proposed model is further improved by optimising the input data and neural network parameters. The improved prediction of stock prices could help investors increase their returns from investment in stock markets.

Keywords: neural network; stock price; prediction; technical indicators; model; stock

Journal Title: Computational Intelligence and Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.